爱乐书屋 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

2014年,人工智能领域正处于深度学习的快速发展时期,但在训练深层神经网络时,仍存在一些无法绕过的核心难题,其中“梯度消失”和“梯度爆炸”问题尤其突出。

当马库斯和林枫的对话逐渐转向这些人工智能瓶颈时,他们自然聊到了这个话题。

对于人工智能涉及到的梯度消失和梯度爆炸这个问题,对于前世就从事人工智能方面工作的林枫来说,他自然是不陌生。

梯度消失和梯度爆炸是神经网络训练中常见的问题。

了解梯度消失和梯度爆炸首先要了解神经网络。

简单说,神经网络是一种模仿人脑工作原理的计算模型。

它由很多“神经元”组成,这些神经元分成多层,数据会从一层传到另一层,最终得到一个结果。

训练神经网络的过程就是不断调整这些神经元之间的“连接强度”,让网络的输出越来越接近我们想要的结果。

为了调整神经网络中的这些连接强度,我们需要用到一种叫“梯度”的东西。

简单来说,梯度就是用来指引我们“往哪里走”的方向,就像你爬山时要知道往哪边是上坡、哪边是下坡。

我们通过“梯度”来知道哪些参数需要调整,从而让网络的表现变得更好。

那“梯度消失”和“梯度爆炸”又是什么呢?

假设你在玩一个滑滑梯,当你站在滑梯的最高处,往下滑时,你能很快感受到速度在增加,因为坡度很大。

但是,如果滑到快要到底部的地方,坡度变得很小,你几乎就感觉不到滑动的速度了。

这里的“坡度”就像是“梯度”——当坡度变小,滑动的速度也变小。

在神经网络中,类似的事情也会发生。

如果我们给网络很多层,它们之间的梯度会越来越小,传到前面几层时,梯度几乎“消失”了。这就是“梯度消失”问题。

梯度太小,无法有效调整那些神经元的连接强度,网络的训练就会变得非常困难。

想象你在爬一个大山,山的坡度越来越平,最终你几乎感受不到自己在上升了,这时你很难再判断该怎么继续往上爬。

在神经网络里,梯度消失的问题就是这种感觉,网络不知道该如何继续改进。

而梯度爆炸又是另外的一个极端。

假设这次你站在一座非常陡的悬崖边,一不小心就滚下去了!

因为坡度太陡了,你的速度变得非常快,失控了。

在神经网络中,这种情况也被称为“梯度爆炸”

当梯度太大时,参数的调整会变得过于剧烈,网络的学习变得不稳定,甚至会导致训练失败。

这就像你在陡峭的悬崖边滑落,一下子失去了控制。

网络的参数变化过大,导致结果变得很不稳定,甚至完全错误。

概括地说:

梯度消失就像在一座越来越平的山坡上,梯度变得很小,神经网络不知道该怎么调整,进而学习变得很慢,甚至无法进步。

梯度爆炸就像从悬崖边滚下去,梯度变得很大,网络的学习变得过于剧烈,结果会非常不稳定,训练过程变得不可控。

这两个问题经常会出现在深层神经网络中。

而这也是马库斯所要倾诉的困扰。

“说起来,最近的研究还卡在了‘梯度消失’的问题上。”马库斯苦笑着说道,靠在沙发上,“我们在训练一些更深层次的神经网络时,发现模型一旦超过一定的深度,反向传播算法中的梯度会逐渐趋近于零,根本无法有效更新权重。深度越大,梯度就越容易消失,整个网络的学习效率大幅下降。”

马库斯知道林枫硕士是麻省理工学院的计算机硕士,因此也就全都用专业术语表述了。

对于这些林枫当然能听明白,非但能听明白,而且作为一个资深的人工智能从业人员。

林枫也清楚知道马库斯面临的难题。

林枫对AI的发展也有所了解,涉及到梯度问题在2014年是深度学习研究中的一个巨大挑战。

甚至可以说解决不了梯度问题就很难有真正的深度学习,也就不会有后来的人工智能成果的一系列井喷。

林枫心说,自己这是一不小心站在了技术发展的最前沿了吗?

不得不说,这种举手投足之间就能影响时代命运的感觉是真的无比美妙。

“梯度消失的问题一直存在,尤其是深层网络。梯度爆炸倒是相对好解决,但梯度消失会直接导致学习过程停滞不前。”林枫沉思片刻,补充道,“这不仅是你们实验室的问题,也是整个领域的瓶颈。反向传播的基本原理决定了,当信号在网络中层层传递时,梯度的变化会以指数级缩小。”

马库斯脑海中泛起了大大的问号,梯度爆炸问题好解决吗?

他怎么觉得梯度爆炸问题也挺麻烦的?

不过聊天本来就是求同存异,既然林同样认为梯度消失难以解决就够了。

马库斯也没纠结为什么林说梯度爆炸容易解决,而是继续就梯度消失发表观点说道:“是啊,哪怕有了ReLU(修正线性单元)激活函数的引入,虽然能在一定程度上减轻梯度消失,但对深层网络还是不够。”

林枫想了想,说道:“你们有考虑过改进网络结构吗?”

爱乐书屋推荐阅读:万道剑尊剑梦儿武道乾坤我高手下山专打气运之子穿越年代之吃好喝好重生之神医军嫂让你写热门歌,你写病态三部曲?农女要当家:夫君,别太急我在九零当相师死对头竟然重生了重生1980:开局迎娶姐姐闺蜜超品兵王在都市盛世婚宠:妖孽邪王,接招吧!清穿之娇养皇妃天价妈咪:总裁爹地超能干叶君临李子染全文免费阅读镇国战神腹黑竹马,你被捕了重生日常修仙港片:我还没出位,老大先出殡了末日?宅舞冒险赘婿神王重生之娇娘军嫂都市之最强狂兵完整版最新章医锦同心重生之都市神帝都市医神狂婿从别人家孩子到黑道教父当一个魔王毁灭世界之后当我能用肉身战胜一切娇妻难驯之拒嫁冷总108次海洋修士黑莲进化史罪妻凌依然不撞竹马不回头我的倾城总裁未婚妻山村小神医重生2008,从欧洲杯开始氪金就变强,高考前我已成皇退圈后!我成了圈内一股泥石流绝世小保安屠尽千亿异兽,登临神位风云激荡二十年良田喜事:腹黑夫君美如花战神叶君临李子染最新大明星的贴身保镖六零俏媳妇娱乐圈无神黑警一纸千金极品邪医闯花都社牛直播:去婚礼亮出嫂子小视频
爱乐书屋搜藏榜:小女人,你好!官场顺溜哥绝色狂医:暴君的心尖宠纨绔疯子金屋妆阿娇港综:重生港岛,我是船王接班人夫君有个心上人床婚守则:龙枭的纯情宝贝诛天武帝震惊!天道剑君他被白莲花俘获了超强特种兵我家honey超能撩如兰似月冥王的金牌宠妃四合院:虐惨秦淮茹,决不被吸血重生之老公宠不停我的宝藏女孩是大明星白露投行之路让你打暑假工,你把地窟平推了?狂妻有主一胎三宝:锦鲤娘亲美又飒透视村医在花都魔门妖女妖精大人看上我让你假结婚,没让你来真的啊魔乱都市围棋阿尔法狗惹哭狗贼双世之楚辞传承国风后我成为考古博主爆红了龙凤双宝:爹地,不准凶妈咪导演能有什么坏心思修仙魔少甩掉校花后,我成了超神学霸穿成替嫁医妃后我被迫母仪天下开局缅北赚钱买科技四合院:怀揣神秘空间法宝步步女配唇唇欲动,老公彬彬无礼人鱼盟誓轮回之不良仙尊娱乐:我是无辜的医生说我胃不好锦言不负安和嫡色生香:侯爷,淡定点桃运小仙农开局,获得念动力赤脚医仙逆流惊涛我的系统奖励很随意
爱乐书屋最新小说:中篇小说集世间百态队友屯积分,我屯队友反派:穿越过去不降智重生1960,从神农架打猎开始名臣后裔刚出大学,富婆小姐姐要包养我隐世龙皇冠禁止维度系统助力:林风的逆袭之旅重生缅北之我有大佬靠山躺平,从蓝星找媳妇生娃开始被嫌弃太穷,我靠黄金瞳成为富翁贫民少年的逆天改命竹匠生存边缘之异界入侵铁柱,下山快活去吧!神临之后权力巅峰:反贪第一人民国地主沉浮存款永远一千,包养我你分期付款全民领主:我能无限鉴定词条!奇门医圣开局校花妈妈给我当秘书师傅和貌美如花徒弟们美母骑士:超神学院时空蔷薇篇我以青铜成就王者都市异能:失落与重拾的力量回穿,卖掉宝藏富可敌国吃上萝莉软饭的科学家只想摆烂第四天灾:鬼子的噩梦来了上门女婿我不当了,你闹啥娱乐:我一个雇佣兵你让我当演员七零之八个扶弟魔的弟弟重生了开局德械师,从伪军到独裁元首偷听心声:前妻她口是心非未来的我?是天降的白给美少女!如此当官带着民众奔小康校园异能联盟人在都市,系统在末世!用成仙骗我送外卖?逆位迷宫拿着易经去穿越都市僵尸王之万界风卷行戈真千金一睁眼,满级马甲爆虐人渣让你当黑手套,你给人去城市化求生:我的兵种叠加所有升级路线我在华夏镇诸天佛之眼娱乐:这个影帝有点儿帅