爱乐书屋 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

马库斯听到林枫提到“改进网络结构”时,愣了一下。

这话听起来似乎有些轻描淡写,在2014年,深度学习的结构问题是个热门话题,而大家都还在围绕如何改进已有的架构,比如cNN(卷积神经网络)和RNN(循环神经网络)展开讨论。

大家都在想着要改进网络结构。

可要说“改进网络结构”,得具体到什么程度才能真正解决梯度消失问题呢?

他迟疑了一会儿,问道:“改进网络结构?你是说尝试新的层设计,还是在激活函数上进一步优化?”

林枫微微一笑,显得胸有成竹。

毕竟林枫关于人工智能的知识量截止到2024,而现在才刚刚2014。

在2024年,解决梯度消失的核心技术已经有了突破性的进展,比如“残差网络”(ResNet)的提出,在当时被认为是改写深度学习领域的一项技术。

但在2014年,这个概念还远未被提出。

林枫意识到自己可能正站在改变这一切的关键时刻。

“激活函数的优化确实重要,”林枫淡淡说道,“但我说的改进,更多是指在网络层次的设计上。你有没有想过,深层网络的问题不只是梯度传递不下去,而是信息本身也无法有效传播?信号在一层层中传递时,逐渐丢失了原本的重要信息,等到最后几层时,网络几乎是在‘盲目学习’。”

“这个道理我懂,”马库斯点了点头,“但我们已经尝试了很多调整,比如增加跳层连接、在特定层使用更强的正则化,甚至尝试了不同的初始化方法,效果依旧有限。”

林枫暗自一笑,跳层连接?

看样子马库斯已经有了些残差网络的雏形思想,但还没触及真正的核心。

“你们是朝着正确的方向走的,”林枫说道,眼神中透着些许不易察觉的自信,“但或许你们忽略了一个更关键的概念。网络越深,信息传递的阻碍就越大,而如果我们在每几层之间构建直接的‘捷径’,让信息不必层层传递,而是能够跨越几层直接回到前面的层,这样就能有效解决梯度消失的问题。”

“直接跨层?这……”马库斯有些困惑,“你的意思是跳过中间的层,让前面的输出直接输入到后面的层?这样网络的非线性特征不就被打破了吗?”

“No,no,no”林枫轻轻摇头,“这种跨层连接并不是要完全替代中间层,而是让信息能够‘绕过’那些不必要的损失点,从而减少梯度消失的机会。中间的层依然存在,依然发挥作用,但跳过的这些连接能够保证信息传递的稳定性。你可以把它想象成是给网络‘加了一层保险’,避免重要信息在传递中被淹没。”

马库斯听得眼前一亮,这个思路与他们之前讨论的跳层连接确实有些相似,但林枫描述的更为彻底。“跨层连接”和“跳层连接”不再只是简单的尝试,而是建立起一种全新的信息传递方式。

这种方式听起来既能保留深度网络的复杂性,又能有效应对梯度消失的问题。

“你说的这些……感觉像是网络中有个反馈机制,确保梯度和信息都能回流,维持学习的稳定性。”马库斯眼中闪过一丝兴奋,他直觉林枫正在讲述的东西,可能会是未来突破深层神经网络训练的关键。

林枫笑了笑,点了点头。

正是“反馈机制”的概念让残差网络得以解决深度神经网络中的许多瓶颈。

林枫继续说道:“这套结构让信号能够通过短路或捷径返回到较浅的层,减少信息丢失,同时保持梯度的大小,确保网络不会在深度增加时失去学习能力。其实你们可以试着在更复杂的网络中引入这种结构,我相信会看到意想不到的效果。”

马库斯默默点头,仿佛意识到了一条前所未有的道路。

“不过你说的这些,”马库斯沉吟片刻,“听起来非常前卫。我们现在的技术,尤其是硬件算力的限制,可能还不足以支撑如此复杂的网络结构和跳跃式的连接方式。”

“的确,”林枫对此并不感到意外,“当前的硬件环境还有限制,特别是GpU算力不足,限制了深度学习网络的规模。不过这些并不是问题,软件技术的发展会推动硬件的进步。

随着并行计算技术的进步,未来会有专门为AI设计的硬件,比如tpU(张量处理单元),它们可以显着提升训练效率。”

为了避免泄露过多,林枫只提到了张量处理器。

其实未来的变化远不仅于此。

在未来,还会有更多高效的优化算法,像Adam优化器会成为主流……

尽管林枫只是透露一点半点,以对未来猜测的形式说出来。

但这已经足够让马库斯无比震惊了。

“tpU?”马库斯皱眉,他从没听说过这个名词,“这是新的硬件架构?”

林枫轻描淡写地补充道:“只是一种假设性的计算架构,未来可能会出现,专门针对深度学习任务,你不觉得针对人工智能深度学习有开发一种专门硬件的必要吗?”

马库斯若有所思地点头,脑海中突然涌现出无数思考的路径。

不得不承认,林说得确实有道理,而且从种种迹象来看,像是Google确实是在致力于开发一种专门用于人工智能的硬件,至于是不是叫做张量处理器,马库斯就无从得知了。

不过马库斯已经是受益匪浅了,虽然林枫描述的这种依托跳跃式连接对于普通的电脑来说肯定是做不到的,硬件跟不上。

但对于实验室环境下实现硬件支持还真不是什么难事,一些美国高校能调动的资源超乎你想象。

马库斯决定回去就实验一番。

林枫看着马库斯那若有所思的郑重神情,心里忍不住暗笑。

他清楚自己随口透露的这点信息,足以让这个时代的研究人员在未来几年迎来爆发式的进步。

不过,对于林枫来说,这不过是习以为常的知识而已。

但马库斯却无比正式地说道:“林!你知道吗?你正在改变世界!”

爱乐书屋推荐阅读:万道剑尊剑梦儿武道乾坤我高手下山专打气运之子穿越年代之吃好喝好重生之神医军嫂让你写热门歌,你写病态三部曲?农女要当家:夫君,别太急我在九零当相师死对头竟然重生了重生1980:开局迎娶姐姐闺蜜超品兵王在都市盛世婚宠:妖孽邪王,接招吧!清穿之娇养皇妃天价妈咪:总裁爹地超能干叶君临李子染全文免费阅读镇国战神腹黑竹马,你被捕了重生日常修仙港片:我还没出位,老大先出殡了末日?宅舞冒险赘婿神王重生之娇娘军嫂都市之最强狂兵完整版最新章医锦同心重生之都市神帝都市医神狂婿从别人家孩子到黑道教父当一个魔王毁灭世界之后当我能用肉身战胜一切娇妻难驯之拒嫁冷总108次海洋修士黑莲进化史罪妻凌依然不撞竹马不回头我的倾城总裁未婚妻山村小神医重生2008,从欧洲杯开始氪金就变强,高考前我已成皇退圈后!我成了圈内一股泥石流绝世小保安屠尽千亿异兽,登临神位风云激荡二十年战神叶君临李子染最新大明星的贴身保镖六零俏媳妇娱乐圈无神黑警一纸千金极品邪医闯花都社牛直播:去婚礼亮出嫂子小视频名媛S小姐大曝光
爱乐书屋搜藏榜:小女人,你好!官场顺溜哥绝色狂医:暴君的心尖宠纨绔疯子金屋妆阿娇港综:重生港岛,我是船王接班人夫君有个心上人床婚守则:龙枭的纯情宝贝诛天武帝震惊!天道剑君他被白莲花俘获了超强特种兵我家honey超能撩如兰似月冥王的金牌宠妃四合院:虐惨秦淮茹,决不被吸血重生之老公宠不停我的宝藏女孩是大明星白露投行之路让你打暑假工,你把地窟平推了?狂妻有主一胎三宝:锦鲤娘亲美又飒透视村医在花都魔门妖女妖精大人看上我让你假结婚,没让你来真的啊魔乱都市围棋阿尔法狗惹哭狗贼双世之楚辞传承国风后我成为考古博主爆红了龙凤双宝:爹地,不准凶妈咪导演能有什么坏心思修仙魔少甩掉校花后,我成了超神学霸穿成替嫁医妃后我被迫母仪天下开局缅北赚钱买科技四合院:怀揣神秘空间法宝步步女配唇唇欲动,老公彬彬无礼人鱼盟誓轮回之不良仙尊娱乐:我是无辜的医生说我胃不好锦言不负安和嫡色生香:侯爷,淡定点桃运小仙农开局,获得念动力赤脚医仙逆流惊涛我的系统奖励很随意
爱乐书屋最新小说:队友屯积分,我屯队友反派:穿越过去不降智重生1960,从神农架打猎开始名臣后裔刚出大学,富婆小姐姐要包养我隐世龙皇冠禁止维度系统助力:林风的逆袭之旅重生缅北之我有大佬靠山躺平,从蓝星找媳妇生娃开始被嫌弃太穷,我靠黄金瞳成为富翁贫民少年的逆天改命竹匠生存边缘之异界入侵铁柱,下山快活去吧!神临之后权力巅峰:反贪第一人民国地主沉浮存款永远一千,包养我你分期付款全民领主:我能无限鉴定词条!奇门医圣开局校花妈妈给我当秘书师傅和貌美如花徒弟们美母骑士:超神学院时空蔷薇篇我以青铜成就王者都市异能:失落与重拾的力量回穿,卖掉宝藏富可敌国吃上萝莉软饭的科学家只想摆烂第四天灾:鬼子的噩梦来了上门女婿我不当了,你闹啥娱乐:我一个雇佣兵你让我当演员七零之八个扶弟魔的弟弟重生了开局德械师,从伪军到独裁元首偷听心声:前妻她口是心非未来的我?是天降的白给美少女!如此当官带着民众奔小康校园异能联盟人在都市,系统在末世!用成仙骗我送外卖?逆位迷宫拿着易经去穿越都市僵尸王之万界风卷行戈真千金一睁眼,满级马甲爆虐人渣让你当黑手套,你给人去城市化求生:我的兵种叠加所有升级路线我在华夏镇诸天佛之眼娱乐:这个影帝有点儿帅神级预言家